Learning Type Identifier Using Neural Networks for Descrete Time Plants
نویسندگان
چکیده
منابع مشابه
Digital Signal Type Identification Using Efficient Identifier And Neural Networks
Automatic digital signal type identification plays an important role for various applications. Since multimode modulation and demodulation is to be performed some standard free method has to be developed which requires an efficient classifier based on the pattern recognition approach. This work presents a highly efficient identifier (technique) that identifies a variety of digital signal types....
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Identifier Inference through Neural Networks
Source code can be treated similar as corpus constructed by natural language (Hindle et al., 2012). In this paper, we use the neural network model to study identifer naming convention problem. We find that neural network model can predict 16.5% identifiers correctly on a randomlyselected source file by training on the unrelated projects. In addition, we compare the performance of model on chara...
متن کاملSelf-organizing map neural network as a multiple model identifier for time-varying plants
The identification method of multiple modeling by the irregular self-organizing map (MMISOM) neural network is presented, which improves the authors’ previous method of MMSOM that uses the rectangular SOM. Inputs to the neural networks are parameters of the instantaneous model computed adaptively in each instant of time. The reference vectors of its output nodes are the parameters estimation of...
متن کاملPREPRINT VERSION An agent-driven semantical identifier using radial basis neural networks and reinforcement learning
Due to the huge availability of documents in digital form, and the deception possibility raise bound to the essence of digital documents and the way they are spread, the authorship attribution problem has constantly increased its relevance. Nowadays, authorship attribution, for both information retrieval and analysis, has gained great importance in the context of security, trust and copyright p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1993
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.29.800